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We determine the phase diagram of a one-dimensional system of hard-core lattice bosons interacting via
repulsive three-body interactions by analytic methods and extensive quantum Monte Carlo simulations. Such
three-body interactions can be derived from a microscopic theory for polar molecules trapped in an optical
lattice. Depending on the strength of the interactions and the particle density, we find superfluid and solid
phases, the latter appearing at an unconventional filling of the lattice and displaying a coexistence of charge-
density wave and bond orders.
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I. INTRODUCTION

Quantum many-body systems provide a wealth of fasci-
nating phenomena in condensed-matter physics, including
superfluidity in liquid helium, the fractional quantum Hall
effect, as well as the exotic electronic states in the pseudogap
regime of cuprate superconductors. While these quantum
phases emerge from dominant two-body interactions, with
higher-order many-body interaction terms providing only
small corrections, an exciting recent avenue of research in
atomic and molecular physics is to engineer systems where
higher-order interactions dominate. In particular, it was re-
cently shown that this goal can be achieved for three-body
interactions using polar molecules.1 In the present work, we
study the most fundamental model Hamiltonian which dis-
plays three-body interactions in one dimension via quantum
Monte Carlo �QMC� simulations.

One-dimensional bosonic systems in the strongly corre-
lated regime have recently been realized with cold atomic
gases: examples are the superfluid �SF� to Mott-insulator
quantum phase transition for atoms trapped in optical
lattices2,3 and the crossover into the hard-core �Tonks-
Girardeau� regime.4 A characteristic feature of hard-core
bosons in a lattice with additional off-site two-body interac-
tions is the appearance of solid phases at half-filling n=1 /2
with either a charge-density wave �CDW� or a bond-ordered
wave �BOW� phase.5,6

In contrast, here we study hard-core bosons with strong
three-body interactions. While the microscopic realization of
the model with polar molecules gives rise to next-nearest-
neighbor �NNN� two-body and three-body interactions,1 the
dominant part of the Hamiltonian is

H = − J�
i

�bi
†bi+1 + bibi+1

† � + W�
i

ni−1nini+1. �1�

The first term describes the standard kinetic energy with hop-
ping rate J, while the second term accounts for the three-
body interaction with strength W; ni=bi

†bi is the density op-
erator with bosonic operators bi and bi

† satisfying the hard-
core constraint. A similar model has recently been studied in
two dimensions.7

We derive the complete quantum phase diagram of
Hamiltonian �1� by means of extensive quantum Monte
Carlo simulations. We find the existence of both SF and solid
phases �see Fig. 1�. However, in contrast to systems with
two-body interactions, we show that the solid phase appear-
ing at the unconventional filling n=2 /3 exhibits both CDW
and BOW orders. While Luttinger liquid �LL� theory predicts
also instabilities toward a solid phase at n=1 /2 and n=1 /3,
we show here that the system remains superfluid even for
strong three-body interactions W /J�1. Solid phases at fill-
ing n=1 /2 are found by adding weak two-body nearest-
neighbor �NN� and NNN corrections to Eq. �1�, V1�inini+1
and V2�inini+2, respectively, as naturally realized with polar
molecules.1

II. RESULTS

The ground-state phase diagram of the model in Eq. �1� is
derived in the grand-canonical ensemble by varying the
chemical potential � at different fixed values of W /J. We use
two different QMC methods: �i� the stochastic series-
expansion �SSE� algorithm with a generalized directed loop
update8 after a decoupling of the Hamiltonian in trimers for
each three-body interaction term and �ii� a code based on the
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FIG. 1. �Color online� �QMC method: WA� Phase diagram of
hard-core lattice bosons with dominant three-body interactions �Eq.
�1�� in the grand-canonical ensemble, � /W vs J /W. The solid phase
at filling n=2 /3 is characterized by a coexistence of CDW and
BOW orders.
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Worm algorithm �WA� path-integral approach,9 which allows
efficient sampling of the many-body path winding numbers
in imaginary time and space directions. Although the SSE
method samples both BOW and CDW orders, its efficiency
drops for very large values of W /J. The WA does not suffer
from this issue and is especially useful in checking the limit
W /J�1. Results obtained with the two methods are found to
be consistent �see below�. The ground-state properties of the
finite systems have been probed using temperatures T
=0.6J /L, with L the number of lattice sites, which was found
sufficiently low.

The phase diagram is determined by two phases �see Fig.
1�: a superfluid LL phase with algebraic correlations, sur-
rounding a solid phase at filling n=2 /3, which appears for
dominant three-body interactions W /J�3. The solid phase is
incompressible, giving rise to the characteristic lobe struc-
ture in the �-W phase diagram. This incompressible phase is
characterized by the structure factors SCDW for a charge-
density wave and SBOW for a bond-order wave at the wave
vector k=2� /3,

SCDW�k� =
1

L
�
j,l

exp�ik�j − l���njnl� , �2�

SBOW�k� =
1

L
�
j,l

exp�ik�j − l���KjKl� , �3�

with the bond operators Kl=bl
†bl+1+blbl+1

† .
The presence of CDW order can be easily understood in

the limit J=0, where the ground state at filling n=2 /3 is
threefold degenerate. In fact, up to lattice translations, each
ground state takes the form ���=	kb3k

† b3k+2
† �0� and exhibits

CDW order with SCDW�2� /3�=n2L /4. From the unconven-
tional filling n=2 /3 of the solid phase, it follows that once
hopping of particles is allowed the charge-density order im-
plies small hopping correlations since the position of a par-
ticle in the solid breaks the symmetry of hopping to the left
or hopping to the right. Using standard perturbation theory in
the hopping term, we find that also a bond-order wave ap-

pears for finite hopping with SBOW�2� /3�=n2LJ2 /W2. Monte
Carlo results directly confirm the coexistence of the two or-
ders. Analogous to the case of the Hubbard model with on
site two-body interactions, this incompressible phase at fill-
ing n=2 /3 can be reached by varying the density, which
corresponds to a mean-field transition, or by keeping the
density constant and by varying the strength of the interac-
tions W /J �see Fig. 1�. We found that the superfluid density
vanishes at the boundaries, indicating that doping of the sys-
tem happens simultaneously to the solid to SF transition. In
the following we will be mainly interested in characterizing
the constant-density transition at the tip of the lobe.

A. Filling n=2 Õ3

Our results for the order parameters SBOW and SCDW at
fixed density n=2 /3 are shown in Fig. 2 for system sizes L
=36, 60, 120, 240, and 300 �top to bottom�, together with the
extrapolated thermodynamic limit �TDL� behavior. The latter
has been obtained based on an observed linear scaling of
SBOW and SCDW in 1 /L within the solid phase and is found to
be in perfect agreement with the strong-coupling results for
the order parameters valid for W /J�1 �dashed lines�. In the
thermodynamic limit, the two order parameters are found to
vanish simultaneously at a critical ratio Wc /J
2.9, corre-
sponding to the solid to liquid transition at the tip of the lobe.

A more refined determination of the transition point can
be obtained using bosonization techniques. In the weakly
interacting regime with W /J�1, the system can be mapped
onto the sine-Gordon model,1

H =
�v
2
� dx�
K�2 +

1

K
��x	�2� + 
 cos��	�� , �4�

where 	 denotes the charging field and � the canonical con-
jugate operator, while K is the LL parameter and �=�36� is
the periodicity of the sine term. Consequently, the transition
from the LL to the solid phase at the tip of the lobe in Fig. 1
appears at the critical value Kc=2 /9 and it belongs to the
Kosterlitz-Thouless �KT� universality class.11�b� For weak in-
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FIG. 2. �Color online� �QMC method: SSE� Lattice filling n=2 /3. �a� Bond-order structure factor SBOW�2� /3� /L vs W /J. Top to bottom:
lattice sizes L=36, 60, 120, 240, and 300; the TDL is indicated. Dashed line: strong-coupling perturbative result 4 /9�J /W�2. �b� Density
structure factor SCDW�2� /3� /L vs W /J. Top to bottom: lattice sizes L=36, 60, 120, 240, and 300; the TDL is indicated. Dashed line:
strong-coupling result n2 /4=1 /9. �c� Superfluid density �s as a function of W /J for lattice sizes L=36, 60, and 120. Inset: Wc /J as a function
of 1 / ln2 L results from the WA. The line is a guide for the eyes.
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teractions W /J�1 the behavior of the Luttinger parameter is
obtained directly from bosonization techniques as K=1
− �2�3 /��W /J; however. this value is strongly renormalized
close to the liquid to solid quantum phase transition. We
compute the LL parameter numerically as K=����s
 /m by
QMC methods, with �s and 
 as the superfluid density and
compressibility, respectively. The latter are calculated from
the statistics of winding numbers �W�

2� in imaginary time and
space directions. In particular, for a square system such that
L�
Lx=L, with L�=�v /T and v=��s /
m the sound veloc-
ity, �s=mLT�Wx

2� /�2 �Ref. 10� and 
= �W�
2� /LT, respectively,

with m=�2 /2J. We have performed simulations for L=60,
90, 120, 150, and 300. In order to precisely locate the critical
point we employ finite-size scaling arguments following
from the KT renormalization-group flow.11 Calling Wc�L� the
value of W for which K�L�=Kc, the finite-size scaling of the
transition point is Wc�L�−Wc� �ln�L��−2, with Wc as the tran-
sition point in the thermodynamic limit. The inset of Fig.
2�c� shows the finite-size scaling of Wc�L�, which gives the
transition point Wc /J=2.80�0.15, in agreement with the
discussion above.

B. Filling n=1 Õ2

In Ref. 1 it is argued that for lattice filling n=1 /2 a su-
perfluid to solid transition should occur as a function of W /J
at a critical LL parameter Kc=0.5. This instability is based on
the observation that replacing the density operator by its
fluctuations around the mean value ni=n+�ni, the three-body
interaction gives rise to nearest-neighbor and next-nearest-
neighbor interactions,

W�
i

ni−1nini+1 � Wn�
i

��ni−1�ni+1 + 2�ni−1�ni� .

In analogy to systems with two-body interactions, one
would expect a solid phase at half-filling n=1 /2. However,
we find that the competition between the nearest-neighbor
interaction of strength 2Wn, which drives an instability to-
ward a CDW solid, and the next-nearest-neighbor interaction
of strength Wn, which drives an instability toward a BOW
solid, removes all instabilities altogether �see below�. The

low-temperature phase is thus a superfluid, independent of
the magnitude of W /J. This behavior is a special property of
three-body interactions, and it is in stark contrast to the two-
body case, where a transition into the solid phase has been
always reported.5 In Fig. 3�a� we show our results for K as a
function of W /J, obtained using the procedure described
above for system sizes L=80, 120, 160, 240, and 320. For
weak three-body interactions W /J�1, K tends to the hard-
core value K=1. We find that for large interactions W /J
�1 the LL parameter saturates at a value K=0.528�0.015
�Kc which is larger than the critical value Kc=0.5, and thus
no superfluid to solid transition occurs at filling n=1 /2. Con-
sistently, the superfluid fraction does not show any appre-
ciable system-size dependence �Fig. 4�.

The inset of Fig. 3�a� shows the structure factor SCDW���
as a function of the inverse system size 1 /L for the case of
W /J=1000. The structure factor extrapolates to a value con-
sistent with zero in the thermodynamic limit, consistent with
a superfluid in this limit of large three-body interactions. It
remains an open question whether there is an analytical re-
sult predicting the value of the Luttinger parameter for infi-
nite three-body interactions in analogy to hard-core bosons
with K=1.
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FIG. 3. �Color online� �QMC method: WA� Lattice filling n=1 /2. �a� Luttinger liquid parameter K as a function of W /J with critical
value Kc=0.5 �dashed line� of the superfluid to solid transition. The inset shows the density structure factor SCDW��� /L as a function of the
inverse system size 1 /L for W /J=1000. �b� Phase diagram in the presence of an additional nearest-neighbor interaction V1 in the plane W /J
vs V1 /J. The arrow indicates the point of the superfluid to solid transition at W /J=0.
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FIG. 4. �QMC method: SSE� Superfluid fraction �s as a function
of W /J for fillings n=1 /3, 1/2, and 2/3. Gray and black lines cor-
respond to system sizes L=60 and 120, respectively. Due to
particle-hole symmetry, the superfluid fractions for n=1 /3 and 2/3
are the same for W /J=0.
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C. Additional two-body interactions

We finally consider the effects of additional short-ranged
two-body repulsions by adding to the model in Eq. �1� a term
V1�inini+1+V2�inini+2 with NN repulsion V1 and NNN re-
pulsion V2. Such terms are important as they constitute the
leading correction to the short-range three-body repulsions
considered thus far and can induce new instabilities of the
LL. In fact, it is well known that a half-filled system of
hard-core bosons with NN repulsions V1 undergoes a super-
fluid to CDW KT transition at V1=2J to a twofold-
degenerate state with ordering pattern � • � • �k=��.12

In Fig. 3�b� we show how this transition is modified due
to the presence of three-body interactions by presenting the
low-energy phases as a function of W /J and V1 /J. We find
that the presence of three-body interactions renormalizes
considerably the SF/CDW transition by shifting it to lower
values of V1 /J�2. In particular, for W /J=1000 we find
V1

c /J=0.75�0.15.
The presence of NNN interactions V2�0 can drive the

system into a bond-ordered phase. In Ref. 5 it is shown that
an ensemble of hard-core bosons with NNN interactions �at
V1=0� enters a k=� bond-ordered phase for V2 /J
=2.15�0.10. For even larger V2 /J�2.66�0.10, a fourfold-
degenerate k=� /2 CDW phase with ordering pattern � • • �
becomes stabilized. We find that the presence of three-body
interactions significantly renormalizes these transition points.
For example, at W /J=10 the SF/BOW transition occurs for
V2 /J=0.9�0.1 and the BOW/CDW transition at V2 /J
=2.1�0.1. Three-body interactions thus widen the extent of
the BOW phase in this regime.

D. Filling n=1 Õ3

We find that at filling n=1 /3 the low-energy phase re-
mains a superfluid independently of the strength of the three-

body interactions. Consistently, the superfluid fraction �s in
this case is found to be essentially independent of W /J in the
range 0�W /J�20, as seen in Fig. 4. We computed the
value of the LL parameter for W /J=1000 and found that K
=0.89�0.01�Kc=2 /9, which confirms that three-body in-
teractions alone do not induce a transition in this region. This
finding contrasts the weak-coupling result1 and exhibits the
strong breaking of particle-hole symmetry by finite three-
body interactions, as seen for W�0 from, e.g., comparing �s
for the two fillings n=1 /3 and n=2 /3 in Fig. 4. Adding a
NN interaction also does not induce any transition at n
=1 /3. In fact, we find for W /J=1000 and V1 /J=20 that K
=0.48�0.01�Kc.

III. CONCLUSIONS

We have determined the phase diagram of the fundamen-
tal model Hamiltonian for hard-core bosons with dominant
short-range three-body interactions in one dimension. The
latter can be realized with polar molecules cooled to the elec-
tronic and vibrational ground state, which is well in the reach
of current experiments.13 The one-dimensional nature of the
problem opens fascinating prospects for studying the dynam-
ics of systems with many-particle interactions by using pow-
erful numerical techniques such as, e.g., adaptive time-
dependent density matrix renormalization group �tDMRG�.14

Extensions to two dimensions7 in various lattice geometries
hold promises in the search for exotic phases, such as, e.g.,
topological phases and spin liquids.
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